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SUMMARY

The generalized MSR-method (GMSR-method) is proposed as a �nite element �uid analysis algorithm
for arbitrarily deformed elements using the error analysis approach. The MSR-method was originally
developed by one of the authors in our previous research works using a modi�ed Galerkin method
(MGM) for a convection–di�usion equation and the SIMPLER-approach. In this paper, this MGM is
developed theoretically in the case of arbitrarily deformed elements using the error analysis approach. In
the GMSR-method, since the inertia term and the pressure term are considered explicitly, only symmet-
rical matrices appear. Hence, it helps us reduce computational memory and computation time. Moreover,
arti�cial viscosity and di�usivity are introduced through an error analysis approach to improve the ac-
curacy and stability. This GMSR-method is applied for two- and three-dimensional natural convection
problems in a cavity. In the computations at di�erent Rayleigh numbers, it is shown that this method
gives reasonable results compared to other research works. Thus, it is found that the GMSR-method is
applicable to thermal-�uid �ow problems with complicated boundaries. Copyright ? 2004 John Wiley
& Sons, Ltd.

KEY WORDS: �nite element method; arbitrarily deformed elements; error analysis approach; cavity �ow;
natural convection

1. INTRODUCTION

Thermal-�uid �ow analyses in natural convection problems are subjects of much interest in
many science and engineering �elds. Recently, Matsuda et al. [1] have proposed a �nite
element method (the MSR-method) which is a combination of a modi�ed Galerkin method
(MGM) and the SIMPLE Revised (SIMPLER) algorithm [2]. The MGM was originally de-
veloped as an e�ective algorithm for a convection–di�usion equation. Comparing with a con-
ventional Galerkin method, in the MGM, convection terms are considered explicitly, and only
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symmetrical matrices appear. In addition, an arti�cial di�usivity is introduced into the formu-
lation through an error analysis approach to improve the accuracy and stability of the MGM
[3, 4]. On the other hand, the SIMPLER algorithm is well known as one of the methods for
solving coupled problems of the velocity and the pressure. The MSR-method is applied to
a three-dimensional natural convection problem in a cubic cavity up to the Rayleigh num-
ber of 108 [5], and its e�ectiveness is veri�ed compared to other studies. In their method,
however, the shapes of the �nite elements are con�ned to speci�c forms such as triangle,
square, tetrahedron and cube. Therefore, it is required that a new method for any form of
�nite elements based on the error analysis approach should be developed in order to solve
actual thermal-�uid �ow problems with complicated boundaries.
In this paper, we propose the generalized MSR-method (GMSR-method) for arbitrarily

deformed elements using the error analysis approach, and investigate its e�ectiveness in two-
and three-dimensional benchmark problems.

2. METHOD OF COMPUTATION

2.1. The ‘GMSR’ algorithm

The GMSR-method is based on the ‘generalized’ MGM for arbitrarily deformed elements
and the SIMPLER-approach. Then, this method is veri�ed through its application for the
thermal-�uid analyses problems. An incompressible viscous �uid �ow with heat transfer is
considered.
The Boussinesq approximation is used for the gravitational term and the buoyancy force

is assumed to be acting in the x2-direction alone. Then, the governing equations in the non-
dimensional form are expressed as follows:

∇ · u=0 (1)

@u
@t
+ u · ∇u=−∇p+ Pr∇2u+ RaPr �j (2)

@�
@t
+ u · ∇�=∇2� (3)

where t is the time, u is the �uid velocity, p is the pressure, � is the �uid temperature, j is
the unit vector in the x2-direction opposite to the gravitational force, and the dimensionless
parameters Pr and Ra are Prandtl and Rayleigh numbers, respectively.
The �rst step of the MSR algorithm is the derivation of the approximate pressure p∗. Equa-

tion (2) is discretized in the temporal direction using the forward Euler method as follows:

un+1 − un
�t

+ un · ∇un=−∇p∗ + Pr∇2un + RaPr �nj (4)

where �t is the time step, p∗ is an approximation of pn+1, and the superscript n indicates
the value at t= n�t. Equation (4) is divided into the following two equations:

û= un +�t{Pr∇2un + RaPr �nj− un · ∇un} (5)

un+1 = û −�t∇p∗ (6)
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where û is generally called a pseudo-velocity. Taking a divergence of Equation (6) and
considering Equation (1) for un+1, we get the following Poisson equation for p∗:

∇2p∗=
∇ · ûn
�t

(7)

The approximate pressure p∗ is obtained using the conventional Galerkin �nite element
method.
The second step is the computations of the approximate velocity u∗ and of a new tempera-

ture �n+1. Using the calculated pressure p∗, Equations (2) and (3) are solved by the following
procedure. These two equations are discretized by the conventional Galerkin �nite element
method. Here the temporal di�erential term is approximated as follows:

�
(
@u
@t

)∗
+ (1− �)

(
@u
@t

)n
=
u∗ − un
�t

(8)

�
(
@�
@t

)n+1
+ (1− �)

(
@�
@t

)n
=
�n+1 − �n
�t

(9)

where � is a time scheme parameter. It should be noted that the inertia, the pressure and
the gravitational terms are dealt with explicitly. Thus we obtain the following �nite element
equations: {

[P]
�t

+ �[D]u

}
{u�}∗ =

{
[P]
�t

− (1− �)[D]u
}

{u�}n − {F�}nu (10)

{
[P]
�t

+ �[D]�

}
{�}n+1 =

{
[P]
�t

− (1− �)[D]�
}

{�}n − {F}n� (11)

where u� (�=1; 2; 3) is the component of velocity vector u, and {u�} and {�} are vectors
whose element is the value of the variable at each node. In the Cartesian co-ordinates, we
get:

[P] =
M∑
e=1

∫
Ve
NiNj dx1 dx2 dx3 (12a)

[D]u =
M∑
e=1

∫
Ve
fu Pr

@Ni
@x�

@Nj
@x�

dx1 dx2 dx3 (12b)

[D]� =
M∑
e=1

∫
Ve
f�
@Ni
@x�

@Nj
@x�

dx1 dx2 dx3 (12c)

{F�}nu =
M∑
e=1

∫
Ve
Ni

(
un�
@un�
@x�

+
@p∗

@x�
− RaPr �n��2

)
dx1 dx2 dx3 (12d)

{F}n� =
M∑
e=1

∫
Ve
Niun�

@�n

@x�
dx1 dx2 dx3 (12e)
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where Ve is the domain of an element, Ni is a shape function, M is the total number of
elements, ��2 is the Kronecker delta, and fu and f� are correction coe�cients for the vis-
cosity term and for the di�usion term, respectively. Note that (x1; x2; x3) represents Cartesian
co-ordinates and the summation convention is used for the subscript � (�=1; 2; 3). The above
correction coe�cients fu and f� are introduced to improve the numerical accuracy and stabil-
ity, and these values are determined through an error analysis approach. The formulations of
Equations (10) and (11) are referred as the MGM. Since the coe�cient matrices appearing
in the left-hand side of Equations (10) and (11) are symmetrical in the MGM, we obtain less
memory size and shorter computation time than conventional Galerkin methods.
The third step is the derivation of the corrected quantity of the pressure. Once the approxi-

mate velocity u∗ is obtained, the new velocity un+1 is given as follows. Considering Equation
(2) for the velocities u∗ and un+1, we get

u∗ − un
�t

+ u∗ · ∇u∗= − ∇p∗ + Pr∇2u∗ + RaPr �∗j (13)

un+1 − un
�t

+ un+1 · ∇un+1 = − ∇pn+1 + Pr∇2un+1 + RaPr �n+1j (14)

It is assumed that the convection, the viscosity and the gravitational terms can be neg-
ligible because these e�ects are taken into account in Equation (11). Hence, subtracting
Equation (13) from Equation (14), we obtain the following Poisson equation:

un+1 − u∗

�t
= − ∇(�p) (15)

where

�p=pn+1 − p∗ (16)

Taking the divergence of Equation (15), we have the following Poisson equation:

∇2(�p)=
∇ · u∗

�t
(17)

The above equation is also computed using the conventional Galerkin method.
The �nal step is the corrections of the velocity and the pressure. Using the �p obtained by

solving Equation (17), the new velocity un+1 and pressure pn+1 are corrected as follows:

un+1 = u∗ −�t∇(�p) (18)

pn+1 =p∗ + �p (19)

The above procedure to obtain the new velocity and pressure is the same as the SIMPLER
procedure. However, we obtain an approximate velocity u∗ and a new temperature �n+1 by
means of the MGM for Equations (10) and (11). We call these coupling procedures the MSR
method in this paper.

2.2. Transformation into generalized co-ordinates

We consider a linear arbitrarily deformed hexahedral element with eight nodes, as shown in
Figure 1. Applying the transformation from Cartesian to generalized co-ordinates, the hexahe-
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Figure 1. Nodes in linear arbitrarily deformed hexahedral element: a node ‘L’ is set to
the origin and the co-ordinates of the surrounding nodes including ‘L’ are de�ned as ‘K’
(a1Kh1; a2Kh2; a3Kh3), where h� (�=1; 2; 3) is a typical mesh size in the x�-direction.

dron is transformed into a cube in the new co-ordinates. We now de�ne the spatial variation
of the physical variable ! (= u�; �) over the element by

!=
8∑
i=1
Ni(�1; �2; �3)!i (20)

where !i means the value at the node i. The shape functions in this case are given by

Ni(�1; �2; �3)= 1
8(1 + E1i�1)(1 + E2i�2)(1 + E3i�3) for i=1; 2; K; 8 (21)

with [E1i ; E2i ; E3i]= [±1;±1;±1].
In order to compute the �nite element equations, the transformation for the �rst derivative

is needed. According to the chain rule of the partial di�erentiation, we obtain the following
relations: 



@
@�1
@
@�2
@
@�3



=[J ]




@
@x1
@
@x2
@
@x3




(22)
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where [J ] is the Jacobian with respect to the transformation and given by

[J ]=




@x1
@�1

@x2
@�1

@x3
@�1

@x1
@�2

@x2
@�2

@x3
@�2

@x1
@�3

@x2
@�3

@x3
@�3



=




8∑
i=1

@Ni
@�1

x1i
8∑
i=1

@Ni
@�1

x2i
8∑
i=1

@Ni
@�1

x3i

8∑
i=1

@Ni
@�2

x1i
8∑
i=1

@Ni
@�2

x2i
8∑
i=1

@Ni
@�2

x3i

8∑
i=1

@Ni
@�3

x1i
8∑
i=1

@Ni
@�3

x2i
8∑
i=1

@Ni
@�3

x3i




(23)

Thus, taking the inverse of the matrix [J ], we get the following expression:


@
@x1
@
@x2
@
@x3



=[J ]−1




@
@�1
@
@�2
@
@�3



=
adj[J ]
det[J ]




@
@�1
@
@�2
@
@�3




(24)

where adj[J ] and det[J ] are the adjoint matrix and the determinant of [J ], respectively. Using
these relations, Equation (12) can be rewritten as follows:

[P] =
M∑
e=1

[∫ 1

−1

∫ 1

−1

∫ 1

−1
NiNj det[J ] d�1 d�2 d�3

]
Ve

(25a)

[D]u =
M∑
e=1

[∫ 1

−1

∫ 1

−1

∫ 1

−1

fu Pr
det[J ]

(
J̃ ��

@Ni
@��

) (
J̃ ��
@Nj
@��

)
d�1 d�2 d�3

]
Ve

(25b)

[D]� =
M∑
e=1

[∫ 1

−1

∫ 1

−1

∫ 1

−1

f�
det[J ]

(
J̃ ��

@Ni
@��

) (
J̃ ��
@Nj
@��

)
d�1 d�2 d�3

]
Ve

(25c)

{F�}nu =
M∑
e=1

[∫ 1

−1

∫ 1

−1

∫ 1

−1
Ni

(
un� J̃ ��

@un�
@��

+ J̃ ��
@p∗

@��
− RaPr �n det[J ]��2

)
d�1 d�2 d�3

]
Ve

(25d)

{F}n� =
M∑
e=1

[∫ 1

−1

∫ 1

−1

∫ 1

−1
Niun� J̃ ��

@�n

@��
d�1 d�2 d�3

]
Ve

(25e)

where J̃ �� is the element of the adj[J ], and the summation convention is used for the subscript
�, � and & (�; �; & = 1; 2; 3) hereafter. The numerical integration can be calculated by using
the Gaussian quadrature. For a general function F(�1; �2; �3), the Gaussian quadrature leads
to an equation of the following form:

∫ 1

−1

∫ 1

−1

∫ 1

−1
F(�1; �2; �3)det[J ] d�1 d�2 d�3 =

l∑
i=1

l∑
j=1

l∑
k=1
Wi ·Wj ·WkF(�∗

1i ; �
∗
2j; �

∗
3k) (26)
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where l is the total number of the Gaussian integration points (�∗
1i ; �

∗
2j; �

∗
3k), and Wi, Wj and

Wk are weighting factors corresponding to each Gaussian point. In the following computations,
the value of l is set to 2, in which Wi=Wj=Wk =1 and the co-ordinates of the Gaussian
points are (�∗

1i ; �
∗
2J ; �

∗
3k)= (±1=

√
3;±1=√3;±1=√3).

2.3. The ‘generalized’ MGM through an error analysis approach

The correction coe�cients fu and f� that are introduced in Equations (12) and (25) are re-
garded as arti�cial viscosity and di�usivity, respectively. They are determined through the
error analysis approach, which is based on a general solution for a convection–di�usion equa-
tion. In the following, Equation (2) is taken as an example to explain the derivation of the
coe�cients, but the same method can be applied to Equation (3) for the temperature. In this
approach, it is assumed that Equation (2) is a convection–di�usion equation by neglecting
the pressure term and the gravitational term and by linearizing the inertia term. Moreover,
multiplying the viscosity term and the inertia term by fu and gu, respectively, we obtain

@u�
@t
+ guU�

@u�
@x�

=fu Pr
@2u�
@x2�

(27)

where U� is assumed a constant value. Here, setting the co-ordinates of a node ‘L’ to
(�1L; h1; �2Lh2; �3Lh3), where h� (�=1; 2; 3) is a typical mesh size, the ampli�cation factor
�A of a general solution in Equation (27) is expressed as follows [5]:

�A=R1 + IR2 (28)

with

R1 = exp[−(	�h�)2r�] cos(b�	�h�) (29a)

R2 =− exp[−(	�h�)2r�] sin(b�	�h�) (29b)

where I =
√−1 is the imaginary unit, 	�=(−∞;∞) is a wave number in the x�-direction,

and the dimensionless parameters b�=U��t=h� and r�=Pr�t=h2� are the Courant and Fourier
numbers, respectively. On the other hand, the ampli�cation factor �N of a numerical solution
in Equation (27) can be written as follows:

�N =
Q1 + fuQ2 + guQ3 + I(Q4 + fuQ5 + guQ6)

Q1 + fuQ7 + I(Q4 + fuQ8)
(30)

where Qi (i=1; 2; K; 8) multiplied by 1, fu and gu are derived from the unsteady, the viscosity
and the inertia terms, respectively. Here, as shown in Figure 1, we set the node ‘L’ to the origin
and de�ne the co-ordinates of the surrounding nodes including ‘L’ as ‘K’ (�1Kh1; �2Kh2; �3Kh3)
for K =1; 2; K; 27. In such a case, the expressions of Qi are given in Appendix A.
The two coe�cients fu and gu are determined by equating the real and imaginary parts

of �N with those of �A under the limits of 	�h� → 0 for all �=1; 2; 3. Since 	�h�=2
h�=��
(where �� is the wave length in the x�-direction), these limits mean that very �ne meshes
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are used in the computations. From Equations (28) and (30), we obtain

fu= lim
	�h�→0

Q3S1 −Q6S2
Q6S3 −Q3S4 (31)

gu= lim
	�h�→0

S2S4 − S1S3
Q6S3 −Q3S4 (32)

with

S1 =Q4(1− R1)− R2Q1 (33a)

S2 =Q1(1− R1) + R2Q4 (33b)

S3 =Q2 − R1Q7 + R2Q8 (33c)

S4 =Q5 − R1Q8 − R2Q7 (33d)

Notice that the L’Hospital theorem is used in the calculations of the limit values. Performing
the di�erentiations of the numerators and denominators in Equations (31) and (32), we get
the following expressions independent of the wave numbers:

fu= lim
	�h�→0

−Q′′
3R

′
2Q1 −Q′

6(−Q1R′′
1 + 2R

′
2Q4)

Q′
6(Q

′′
2 −Q′′

7 )
(34)

gu= lim
	�h�→0

R′
2Q1
Q′
6

(35)

Substituting the limit values given in Appendix B into Equations (34) and (35), we �nally
obtain the coe�cients fu and gu:

fu =− A(0)(b1 + b2 + b3)(C
(2)
1 b1 + C

(2)
2 b2 + C

(2)
3 b3)

(C(1)1 b1 + C
(1)
2 b2 + C

(1)
3 b3)(B

(2)
1 r1 + B

(2)
2 r2 + B

(2)
3 r3)

+
A(0){2(r1 + r2 + r3) + (b1 + b2 + b3)2} − 2A(1)(b1 + b2 + b3)

B(2)1 r1 + B
(2)
2 r2 + B

(2)
3 r3

(36)

gu= − A(0)(b1 + b2 + b3)

C(1)1 b1 + C
(1)
2 b2 + C

(1)
3 b3

(37)

with

A(0) =
27∑
K=1

PK (38a)

A(1) =
27∑
K=1

PK(�1K + �2K + �3K) (38b)

B(2)� =
27∑
K=1

[−D�;K(�1K + �2K + �3K)2] (38c)
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C(1)� =
27∑
K=1

F�;K(�1K + �2K + �3K) (38d)

C(2)� =−
27∑
K=1

[
F�;K(�1K + �2K + �3K)2

]
(38e)

where PK , D�;K and F�;K are given in Appendix A. In particular, the correction coe�cients
in a linear non-uniform cuboidal element are speci�ed as follows:

fu=1+
(b1 + b2 + b3)2

2(r1 + r2 + r3)
+
(�1 − 1)b1 + (�2 − 1)b2 + (�3 − 1)b3

6(r1 + r2 + r3)
(39)

gu=1 (40)

where �� (�=1; 2; 3) is the ratio of mesh size in the x�-direction.
For the temperature � in Equation (3), on the other hand, the correction coe�cients f� and

g� are obtained in the same form as Equations (36) and (37) except that the Fourier number
in Equation (3) is given by r�=�t=h2� .

3. NUMERICAL RESULTS

3.1. Natural convection problems in a square cavity

In order to check the validity of the proposed method, we �rst compute the buoyancy-driven
�ows in a two-dimensional square cavity of 1× 1, as shown in Figure 2, using the MSR
method. The initial conditions are u=0 and �=0 in the whole domain. The boundary condi-
tions are imposed as follows: u=0 and (@p=@n)=0 at all walls, �=1 and �=0 at the left-

Figure 2. Geometry of two-dimensional natural convection problem.
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Figure 3. Mesh con�gurations: (a) arbitrary quadrilateral mesh; and
(b) non-uniform rectangular mesh.

and right-hand sides of walls, respectively, and (@�=@n)=0 at the other walls, where @=@n=0
is the derivative normal to the boundary. The Prandtl number Pr is kept at 0.71, and the
Rayleigh number Ra is set to 710 and 105. The computations are carried out by using two
types of mesh con�gurations: one is an arbitrary quadrilateral mesh and the other is a non-
uniform rectangular mesh, as shown in Figure 3. The steady state criterion � is de�ned as
follows:

�=max
{∣∣∣∣um1 − um−1

1

um1

∣∣∣∣ ;
∣∣∣∣um2 − um−1

2

um2

∣∣∣∣
}

× 1006 0:001 (%)

for ∀|um1 |; |um2 | ¿ max{|um−1
1 |; |um−1

2 |} × 0:001 (41)

To examine the actual heat �ux across the cavity, the average Nusselt number Nu0 on the
hot wall is calculated by

Nu0 =
∫ 1

0

∣∣∣∣ @�@x1
∣∣∣∣
x1 = 0

dx2 (42)

where | · | means the absolute value. The average Nusselt number Nu1 on the cold wall is
de�ned in the same way. In the above equation, the �rst derivative of the temperature is dis-
cretized by the one-sided second-order di�erence approximation and the integral is numerically
calculated by the Simpson formula.
Table I presents the computational parameters and the numerical results. In this table, u1;max

and u2;max are the maximum velocities in the x1- and x2-directions, respectively. It should be
noted that the number of meshes are determined so that the number of nodes are almost equal
in the two mesh con�gurations.
Figure 4 shows the computed velocity vectors and isotherms at Ra=105 by using the two

types of grid and Figure 5 shows the convergence history of the average Nusselt numbers
on the hot and cold walls at Ra=105. It is found that these average Nusselt numbers reach
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Table I. Computational parameters and numerical results in two-dimensional natural convection
problem: (a) arbitrary quadrilateral element; (b) non-uniform rectangular element.

Ra Element Meshes Nodes �t Number of iterations u1;max u2;max Nu0

105 (a) 888 969 1× 10−4 3234 36.04 68.59 4.703
(b) 900 961 1× 10−4 3242 35.18 68.77 4.549

Figure 4. Computed velocity vectors (left) and isotherms (right) at Ra=105 in
two-dimensional natural convection problem: (a) arbitrary quadrilateral mesh; and

(b) non-uniform rectangular mesh. (The contour interval of the isotherms is 0.1.)

almost the same value at the �nal state. Also, the present computations give reasonable results
compared to those by Hortmann et al. [6]. Thus, it is found that the present method is valid
for the thermal-�uid �ow problems.

3.2. Natural convection problems in a cubic cavity

We next investigate the buoyancy-driven �ows in a cubic cavity of 1× 1× 1, as shown in
Figure 6. The initial and boundary conditions are the same as in the previous two-dimensional
problems. The Prandtl number Pr is 0.71, and the Rayleigh number Ra is set to 108. In the
computations, we use a linear non-uniform cubic mesh of 50× 50× 50 shown in Figure 7.
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Figure 5. Convergence history of average Nusselt numbers at Ra=105

in two-dimensional natural convection problem: (a) arbitrary quadrilateral
mesh; and (b) non-uniform rectangular mesh.

Figure 6. Geometry of three-dimensional natural convection problem.

The non-uniform mesh sizes are determined by the following equations [7]:

x�i =




exp[a(i − 1) dx�]− 1
2[exp(a)− 1] for x�60:5

exp{a[1− (i − 1)] dx�} − 1
2[exp(a)− 1] for x�¿0:5

(43)

with a=2 and dx�=2=(N� − 1), where N� denotes the number of grids in the x�-direction.
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Figure 7. Non-uniform cuboidal mesh (50× 50× 50).

Table II. Computational parameters and numerical results in three-dimensional natural
convection problem using non-uniform cuboidal element.

Ra Element Meshes �t Number of iterations Nu0

108 Non-uniform cuboid 50× 50× 50 1× 10−6 64 000 28.47

Figure 8. Time variation of � in three-dimensional natural convection problem.

Table II presents the computational parameters and the numerical results. It should be
noted that the number of iterations in this problem is a given value due to the unsteady
�ows described below. Figure 8 shows the time variation of �. It is found that the value
of � remains around 10% and the steady-state criterion in Equation (41) is not satis�ed in
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Figure 9. Computed velocity vectors (left) and isotherms (right) at Ra=108 in
three-dimensional natural convection problem: (a) x1–x2 plane at x3 = 0:5; (b) x2–x3 plane
at x1 = 0:5; and (c) x3–x1 plane at x2 = 0:5. (The contour interval of the isotherms is 0.1.)

this case. The reason would be that the �ow becomes weak turbulent because there is strong
buoyancy.
Figure 9 shows the computed velocity vectors and the isotherms after transitional �ows,

on the x1–x2 plane at x3 = 0:5, x2–x3 plane at x1 = 0:5 and x3–x1 plane at x2 = 0:5. Note that
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Figure 10. Convergence history of average Nusselt numbers at Ra=108

in three-dimensional natural convection problem.

the length of vectors on the x2–x3 and on the x3–x1 planes are multiplied by a scale of 5
with respect to that on the x1–x2 plane. In particular, it is seen that the four vortices appear
near the corners in Figure 9(b) and the strength of each vortex varies as time goes on. Thus,
it is found that the �ow �eld becomes time dependent. However, as shown in Figure 10,
the average Nusselt numbers on the hot and cold walls reach almost the same value at the
�nal state in spite of the unsteady �ow. Therefore, it is shown that the present scheme can
maintain the conservation of energy very well even at Rayleigh number as high as 108.
Finally, we examine the e�ects of the boundary layer. According to Gill [8], the thickness

�� of the boundary layer is estimated as ��=1:8Ra−1=4; it follows that the layer contains two
nodes in the present computations. Further investigations should be made using �ner meshes.

4. CONCLUDING REMARKS

The GMSR-method is proposed as a �nite element �uid analysis algorithm for arbitrarily
deformed elements using the error analysis approach. The GMSR-method is based on the
‘generalized’ MGM for a convection–di�usion equation and the SIMPLER-approach. This
‘generalized’ MGM is developed theoretically in the case of arbitrarily deformed elements
using the error analysis approach. Thus, in the GMSR-method, since the inertia term and
the pressure term are considered explicitly, only symmetrical matrices appear. Hence, it helps
us reduce computational memory and computation time. Moreover, arti�cial viscosity and
di�usivity are introduced through an error analysis approach to improve the accuracy and
stability. Natural convection problems in a cavity were simulated using this GMSR-method
to check the accuracy.
In the two-dimensional problem, the validity of this method is demonstrated by comparison

with other numerical results. In the three-dimensional problem, at Ra=108 the �ow becomes
time dependent; nevertheless the converged average Nusselt numbers on the hot and cold walls
are obtained. Therefore, it is found that the GMSR-scheme with arbitrarily deformed elements
can maintain the conservation of energy even at high Rayleigh numbers. Finally, it should
be noted that the main advantages of the GMSR-method are considered less computational
memory and shorter computation time maintaining the numerical stability.
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Further investigation will be required for a total computational performance of the GMSR-
method in the future.

APPENDIX A: EXPRESSIONS OF Qi

In Figure 1, the expressions of Qi (i=1; 2; K; 8) at the node L are given as follows:

Q1 =
27∑
K=1
PK cos(��K	�h�) (A1)

Q2 =
27∑
K=1
[−(1− �)r�D�;K ] cos(��K	�h�) (A2)

Q3 =
27∑
K=1

(−b�F�;K) cos(��K	�h�) (A3)

Q4 =
27∑
K=1
PK sin(��K	�h�) (A4)

Q5 =
27∑
K=1

[−(1− �)r�D�;K ] sin(��K	�h�) (A5)

Q6 =
27∑
K=1

(−b�F�;K) sin(��K	�h�) (A6)

Q7 =
27∑
K=1

(�r�D�;K) cos(��K	�h�) (A7)

Q8 =
27∑
K=1
(�r�D�;K) sin(��K	�h�) (A8)

where

PK =
[
M∑
e=1

∫
Ve
NiNj dx1 dx2 dx3

]
K

(A9)

D�;K =
[
M∑
e=1

∫
Ve
h2�
@Ni
@x�

@Nj
@x�

dx1 dx2 dx3

]
K

(A10)

F�;K =
[
M∑
e=1

∫
Ve
h�Ni

@Nj
@x�

dx1 dx2 dx3

]
K

(A11)

for �=1; 2; 3. It should be noted that the summation convention is used for the subscript
� (�=1; 2; 3) in the above equations.
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APPENDIX B: LIMIT VALUES OF Qi, Ri AND THEIR DERIVATIVES

It should be noted that 	�h� → 0 for all �=1; 2; 3 indicates 
→ 0 where 	1h1 =	2h2 =	3h3 = 
.
Also, the symbols ‘′’ and ‘′′’ denote the �rst and second derivatives, respectively.
(a) Limit values of Qi and Ri:

lim
	�h�→0

Q1 =
27∑
K=1

PK (B1)

lim
	�h�→0

Q2 =−(1− �)
27∑
K=1

(r1D1; K + r2D2; K + r3D3; K) (B2)

lim
	�h�→0

Q3 =−
27∑
K=1

(b1F1; K + b2F2; K + b3F3; K) (B3)

lim
	�h�→0

Q7 =�
27∑
K=1

(r1D1; K + r2D2; K + r3D3; K) (B4)

lim
	�h�→0

Q4 = lim
	�h�→0

Q5 = lim
	�h�→0

Q6 = lim
	�h�→0

Q8 = 0 (B5)

lim
	�h�→0

R1 = lim
	�h�→0

{exp[−(	�h�)2r�] cos(b�	�h�)}=1 (B6)

lim
	�h�→0

R2 = lim
	�h�→0

{− exp[−(	�h�)2r�] sin(b�	�h�)}=0 (B7)

(b) Limit values of Q′
i and R′

i

lim
	�h�→0

Q′
4 =

27∑
K=1

PK(�1K + �2K + �3K) (B8)

lim
	�h�→0

Q′
5 =−(1− �)

27∑
K=1

(r1D1; K + r2D2; K + r3D3; K)(�1K + �2K + �3K) (B9)

lim
	�h�→0

Q′
6 =−

27∑
K=1
(b1F1; K + b2F2; K + b3F3; K)(�1K + �2K + �3K) (B10)

lim
	�h�→0

Q′
8 =�

27∑
K=1
(r1D1; K + r2D2; K + r3D3; K)(�1K + �2K + �3K) (B11)
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lim
	�h�→0

Q′
1 = lim

	�h�→0
Q′
2 = lim

	�h�→0
Q′
3 = lim

	�h�→0
Q′
7 = 0 (B12)

lim
	�h�→0

R′
1 = 0 (B13)

lim
	�h�→0

R′
2 =−(b1 + b2 + b3) (B14)

(c) Limit values of Q′′
i and R′′

i :

lim
	�h�→0

Q′′
1 =−

27∑
K=1

PK(�1K + �2K + �3K)2 (B15)

lim
	�h�→0

Q′′
2 =−(1− �)

27∑
K=1

(r1D1; K + r2D2; K + r3D3; K)(�1K + �2K + �3K)2 (B16)

lim
	�h�→0

Q′′
3 =

27∑
K=1
(b1F1; K + b2F2; K + b3F3; K)(�1K + �2K + �3K)2 (B17)

lim
	�h�→0

Q′′
7 =−�

27∑
K=1
(r1D1; K + r2D2; K + r3D3; K)(�1K + �2K + �3K)2 (B18)

lim
	�h�→0

Q′′
4 = lim

	�h�→0
Q′′
5 = lim

	�h�→0
Q′′
6 = lim

	�h�→0
Q′′
8 = 0 (B19)

lim
	�h�→0

R′′
1 =−2(r1 + r2 + r3)− (b1 + b2 + b3)2 (B20)

lim
	�h�→0

R′′
2 = 0 (B21)
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